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We present experimental measurements of velocity and temperature fields in horizon-
tal planes crossing a cylindrical Rayleigh–Bénard convection cell in steady rotation
about its vertical axis. The range of dimensionless rotation rates Ω is from zero to
5× 104 for a Rayleigh number R = 3.2× 108. The corresponding range of convective
Rossby numbers is ∞ > Ro > 0.06. The patterns of velocity and temperature and the
flow statistics characterize three basic flow regimes. For Ro� 1, the flow is dominated
by vortex sheets (plumes) typical of turbulent convection without rotation. The flow
patterns for Ro ∼ 1 are cyclone-dominated, with anticyclonic vortices rare. As the
Rossby number continues to decrease, the number of anticyclonic vortex structures
begins to grow but the vorticity PDF in the vicinity of the top boundary layer still
shows skewness favouring cyclonic vorticity. Velocity-averaging near the top of the
cell suggests the existence of a global circulation pattern for Ro� 1.

1. Introduction
Rotating convection, the history of which covers more than 250 years starting with

the work of Hadley (1735) on trade wind, is very important in many geophysical
and astrophysical phenomena. A considerable body of theoretical, computational and
experimental work on rotating convection exists, although quantitative experimental
data, in particular, pertaining to flow patterns and velocity, has been somewhat scarce
until recently. In this paper we present detailed field measurements of velocity and
vorticity in rotating convection.

The introductory part of the paper is organized into two subsections. In the first
subsection, we describe the dimensionless variables and scales characterizing rotating
convection. The known properties of the flow in different convection regimes along
with an overview of the literature are presented in the second subsection.

1.1. Rotating convection: characteristic dimensionless parameters

Consider a fluid layer of depth d in a gravitational field with acceleration g, heated
at the bottom and cooled at the top, thereby producing a temperature difference ∆T
across it. If the critical value ∆Tc is exceeded, this layer becomes unstable to buoyancy
and fluid motion starts, thus adding advection to diffusion in heat transport.

Without rotation, there are three independent dimensionless parameters that define
the system. First, the Rayleigh number R denotes the respective relevance of buoyancy
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and dissipation in the fluid:

R =
αg∆Td3

νκ
,

where α is the fluid coefficient of thermal expansion, ν is kinematic viscosity and
κ is thermal diffusivity. The second dimensionless parameter is the Prandtl number
characterizing the dissipative properties of the fluid σ = ν/κ. The dimensionless
geometric parameter Γ is the ratio between the layer height d and the characteristic
horizontal size. It constrains the largest horizontal eddy size in the system. For
convection in a cylindrical cell of a radius r0, Γ = 2r0/d. One more parameter is
required if the system rotates – the dimensionless rotation rate proportional to the
strength of the Coriolis force

Ω =
ΩDd

2

ν
,

where ΩD is the angular rotation rate.
We will employ these four independent dimensionless parameters – R, σ, Γ and Ω –

in the following discussion of our experiment. A very useful additional dimensionless
number that characterizes the respective importance of buoyancy and rotation is
the convective Rossby number Ro (Julien et al. 1997), which can be formed as a
combination of R, σ and Ω:

Ro =
1

2Ω

√
R

σ
=

√
gα∆T/d

2ΩD
∼ τrotation

τbuoyancy

, (1.1)

where τrotation and τbuoyancy are the corresponding characteristic time scales. Rotation is
also often defined by the Taylor number Ta = (2Ω)2. The Rayleigh number in rotating
flows can be compared to its critical value according to the theory of Chandrasekhar
(1953): RC ' 8.7Ta2/3 via the ratio R/RC.

To describe convection in terms of the heat flux q rather than ∆T , a Rayleigh flux
number Rf is introduced: Rf = αgqd4/kκν, where k is thermal conductivity coefficient.
The ratio between R and Rf (or between total and diffusive thermal conductance) is
the Nusselt number Nu = Rf/R. The Nu–R relationship is prominent in turbulent
convection scaling theories (Siggia 1994).

In this paper, we present velocity and vorticity values in dimensionless form, taking
the unit of time to be the buoyancy rise time τb = (gα∆T/d)1/2 (τbuoyancy in (1.1)) and
the unit of velocity to be vb = d/τb. Non-dimensionalization based on the rotation time
scale would be inconvenient because the latter would reach infinity as the rotation
rate goes to zero. The diffusion time scale of d2/κ is not very appropriate for the
turbulent regime.

1.2. Flow regimes in rotating convection as described by theory, experiments
and numerical studies

Following Boubnov & Golitsyn (1995) and Fernando, Boyer & Chen (1991), our
overview of the regimes of rotating convection is based on a map of domains in the
(Rf, Ta)-plane illustrated in figure 1. We will also touch briefly on some issues related
to non-rotating turbulent convection (Siggia 1994).

For non-rotating convection in the turbulent regime, the main features of the flow
are buoyancy-driven irregular thermal sheets (plumes) propagating into the bulk of
the fluid from the thermal boundary layers at the bottom and top of the container
(Tanaka & Miyata 1980; Zocchi, Moses & Libchaber 1990). Outside the thermal
layers, the temperature in the bulk of the fluid fluctuates about halfway between the
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Figure 1. Domains in the (Rf, Ta)-plane explored by various investigators (after Fernando et al.
1995). Thin solid line – Chandrasekhar (1953) boundary; thick solid line NF – Nakagawa & Frenzen
(1955); area R outlined with dashed line – Rossby (1969); light grey – Boubnov & Golitsyn (1986);
diagonally hatched rectangle F – Fernando et al. (1995); dark grey area ZES – Zhong et al. (1993);
rectangle with dash-dotted boundary LE – Liu & Ecke (1997); vertically hatched rectangle VE –
Vorobieff & Ecke (1998b); thick dotted line – present study. Dashed lines indicate approximate
boundaries between flow regimes according to the classification of Boubnov & Golitsyn (1995):
1 – thermoconductivity, 2 – regular vortex grid, 3 – irregular geostrophic turbulence, 4 – thermal
turbulence. No particular significance should be attributed to slopes of these lines.

top and bottom temperatures, and the temperature PDF has exponential tails (Wu et
al. 1990). An important aspect of turbulent convection is the scaling of heat transport
(Siggia 1994) but that does not concern us here.

Rotation modifies the problem of convective stability (Chandrasekhar 1953; Naka-
gawa & Frenzen 1955), suppressing the onset of convection by rotation. The thin
solid line in figure 1 shows the threshold of the onset of convection according to
Chandrasekhar (1953) for no-slip top and bottom boundaries, whereas the overlaying
thick line shows the region experimentally investigated by Nakagawa & Frenzen
(1955). Their visualizations demonstrated the two types of vortical structures that
dominate the flow. Cyclonic vortices rotate in the direction of the cell rotation,
are born near the top surface of the cell, and carry cool material from the upper
(cold) thermal boundary layer downward. Conversely, anticyclonic vortices rotate
in the opposite direction and carry warm material upward. This flow regime is
characterized by small Rossby numbers (Ro� 1). Near the critical curve, Nakagawa
& Frenzen (1955) found that the vortical structure size scaled with Ω2/3 and was
roughly independent of the heat flux. Later precise heat transport measurements for
rotating convection with rigid top and bottom boundaries by Rossby (1969), Lucas,
Pfotenhauer & Donnelly (1983), and Zhong, Ecke & Steinberg (1993) are consistent
with Chandrasekhar’s results, provided the sidewall mode is accounted for (Zhong et
al. 1993; Ning & Ecke 1993; Ecke & Liu 1998).

For a rapidly rotating flow, the Taylor–Proudman theorem becomes important.
This theorem prohibits vertical variation of vertical velocity for slow, steady flows
of an inviscid fluid rotating about the vertical axis, effectively rendering the flow
two-dimensional. For weak violations of this theorem, such as exist for R/RC ∼ 1,
variation in vertical velocity occurs near the top and bottom boundary layers, leading
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to a flow pattern of cyclonic/anticyclonic vortex columns carrying material between
the top and bottom boundary layers. Boubnov & Golitsyn (1986, 1990, 1995) and
Sakai (1997) reported regular grids of columnar vortices with a nearly constant
vertical velocity outside the boundary layers.

The flow behaviour far away from R/RC ≈ 1 in the parameter domain has been the
subject of several experimental investigations including heat transport measurements
(Rossby 1969; Zhong et al. 1993; Liu & Ecke 1997), visualization of flow patterns
(Dikarev 1983; Boubnov & Golitsyn 1986; Zhong et al. 1993; Sakai 1997), and local
velocity and temperature measurements (Fernando et al. 1991; Liu & Ecke 2002). On
the basis of this work, a rough division of parameter space can be suggested (Boubnov
& Golitsyn 1995). If Ro� 1, the flow is dominated by buoyancy and is similar to the
no-rotation case. If Ro� 1, the flow is dominated by rotation and the flow pattern is
a quasi-regular vortex grid. The boundary of the thermal turbulence domain (dashed
line between areas 3 and 4 in figure 1) corresponds to Ro ∼ 1. Between the domains
of thermal turbulence and regular-grid convection in the phase-space lies an area of
the flow regime Boubnov & Golitsyn (1995) describe as ‘irregular quasigeostrophic
turbulence’. In the quasi-geostrophic equations for the atmosphere or oceans, there
is symmetry between cyclonic and anticyclonic motions, provided the local vorticity
is small compared to ΩD . We will use our measurements of vorticity to assess this
condition by evaluating a local Rossby number RoL defined as the ratio ω/2ΩD ,
where ω is a measure of either peak or r.m.s. vorticity, as described later.

The numerical study of Julien et al. (1997) concentrated on simulating rotating
turbulence at Ro ∼ 0.75. They found that the interaction of the velocity and thermal
boundary layers at horizontal boundaries reshapes cyclonic vortices into annular
ridges. They presented vorticity PDFs near the top of the cell with a distinct skewness
favouring cyclonic vorticity. The authors also stated that for Ro ∼ 0.75, concentrated
anticyclonic vortices were unlikely. The overall balance of vorticity was maintained
by concentrated cyclones immersed in a field of diffuse weakly anticyclonic vorticity.
Boubnov & Golitsyn (1990) also reported predominantly cyclonic vortex structures.
Our previous study (Vorobieff & Ecke 1998a) investigated the size and structure
of vortices and the decay of vorticity in the vortex core as a function of distance
from the top boundary. Some aspects of steady rotation were also considered in the
work describing transient phenomena upon impulsive spin-up of a Rayleigh–Bénard
cell, Vorobieff & Ecke (1998b). The dependence of the overall number of vortices
on the rotation rate presented in that paper was in good agreement with the results
of Boubnov & Golitsyn (1986), although most of their observations were for the
case of an evaporatively cooled cell with a free upper surface, whereas our cell was
completely enclosed. It must be generally mentioned that boundary conditions exert
a very strong influence on the rotating convective flow (see numerical comparisons
done by Julien et al. 1997), and one must exercise caution when comparing results
acquired with different boundary conditions, even when the dimensionless parameters
indicate similarity.

The goal of this paper is to provide a quantitative description of the flow structure
and statistics at different depths in a fully enclosed cylindrical convection cell for
R = 3.2 × 108 and over a range of rotation rates 0 < Ω < 5 × 104, corresponding
to the thick dashed line in the parameter domain, figure 1. We use particle image
velocimetry (PIV) to acquire instantaneous horizontal sections of the velocity field.
Along with the statistics of velocity and vorticity, we present results characterizing
cyclonic and anticyclonic vortices in terms of the eigenvalues of the velocity gradient
tensor. The second section contains a description of our experimental apparatus and
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Figure 2. Experimental setup. A – video camera, B – array of slits, C (dashed line) – cell volume
where velocity fields are acquired, D – mirror, E – cylindrical lens, F – spherical lens, G – light
sheet, H – transparent cooling manifold, I – heating plate, J – thermistors.

PIV system followed by analysis of the accuracy of the velocity field acquisition. The
third section of the paper describes our observations and analysis of the velocity data
sets – from vorticity and topological charge fields to statistics and scales, including
comparison of the local Rossby number RoL based on r.m.s. vorticity with the global
Rossby number Ro.

2. Experimental setup and data acquisition
A detailed description of our apparatus for rotating convection, shown in figure 2,

was presented earlier (Vorobieff & Ecke 1998a, b). The cell is a circular cylinder with
vertical walls made of thick Plexiglas, with height d = 12.7 cm and radius r0 = 6.35 cm
(aspect ratio Γ = 1). The cell is filled with water at a mean temperature 30.0 ◦C,
Prandtl number σ = 5.81. The bottom of the cell is a 6 mm thick plate of anodized
aluminium with an electric heater glued onto the lower surface, providing a constant
heat flux. The top of the cell is a thin (3.2 mm) sapphire window. The top surface of the
window is exposed to water circulating in a transparent cooling manifold attached to
a precision temperature control unit. The temperature in the manifold is maintained
at 28.1 ± 0.01 ◦C, and the temperature difference across the cell is ∆T = 3.8 ◦C. The
water-filled cell with the bottom heater and top temperature-controlled manifold is
placed on a rotating table. The design of the rotating table is similar to that often
employed in hi-fi turntable record players and in some microwave ovens (see Vorobieff
& Ecke 1998a, b for details). The main advantage of this design is the absence of a
shaft on the axis of rotation. The table is rotated clockwise by a computer-controlled
stepping motor.

The rotating connectors for the cooling system intake and exhaust are mounted on
the axis of the table below and above the cell, connecting the cooling manifold with
the stationary-water temperature-control unit. The water intake is surrounded by a
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plastic cylinder with twenty low-noise electrical slip-ring connectors mounted on the
outer side of the cylinder. These connectors feed power to the visualization system
mounted on the table and output signals from the instrumentation. Two thermistors
are installed in the bottom plate and inside the temperature control manifold above
the cell. The top probe is mounted on an adjustable swingarm to measure uniformity
of temperature inside the manifold.

A 300 W xenon arc lamp illuminates the flow. The optical system consists of the
lamp, a flexible liquid-filled conduit, a spherical lens, a cylindrical lens and a slit. It
produces a horizontal sheet of white light across the cell with initial thickness 2 mm
and colour temperature 5900 K. Due to scatter in the sheet as it crosses the horizontal
extent of the cell, the effective sheet thickness increases by about 50% at the far
side of the cell. The optical system is mounted on a vertical translation stage driven
by a computer-controlled stepping motor, allowing the illumination of cross-sections
of the fluid at different distances from the top. Images are recorded with a digital
colour camcorder (Sony DCR-VX1000) at 30 frames per second. The effective frame
resolution after transfer to PC is 640× 480.

Two kinds of particles were employed in flow visualization. To map temperature,
the flow was seeded with 5-µm thermochromic liquid crystal (TLC) microcapsules
changing the hue of scattered colour with temperature. The acquired colour maps
were interpreted in terms of temperature using the calibration procedure described in
our earlier work (Vorobieff & Ecke 1998b). This procedure allows the reconstruction
of temperature maps with an error not exceeding 0.1 ◦C within the range of colour
play of the TLC (28.15–32 ◦C). Temperature maps presented in this work show the
entire circular cross-section of the cell, resulting in a spatial resolution of 250 µm per
pixel.

For the PIV diagnostic, we used 250-µm polystyrene microspheres, nearly neutrally
buoyant. The relatively large particle size was necessary to avoid undersampling
errors (i.e. loss of accuracy due to particle size being smaller than our modest pixel
resolution). The maximum frame size with an aspect ratio 4 : 3 that fits within a
cylindrical horizontal section of the cell is 10.1 by 7.6 cm, with the pixel resolution
160 µm. In the results presented in this paper, the (u, v) velocity components are
defined with u parallel to the long side of this frame.

There are two sources of error important in determining the accuracy of PIV. First,
according to Adrian (1995), tracer particles advected by a turbulent flow do not
follow the fluid flow perfectly. The estimate of the error due to turbulent motion of
the fluid (r.m.s. particle lag δurms) can be written as

δurms ∼ u2

λT
|∆t/2− 〈τp〉|,

where λT is the Taylor microscale, ∆t is the time interval between exposures and τp is
the turbulent lag of the particle:

τp =
2ρpd

2
p

9ρν
.

In the expression above, ρp and dp denote particle density and diameter, whereas ρ
and ν are the density and kinematic viscosity of the surrounding fluid. For polystyrene
microspheres ρp = 1.03 g cm−3 and dp = 250 µm, resulting in τp = 0.018 s. As Adrian
(1995) mentions, the error can be reduced by the appropriate selection of ∆t. 30
frames per second mean ∆t/2 = 0.016 s – very close in magnitude to τp.

A detailed description of the acquisition procedure for Taylor microscale λT is
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presented in the next section. For the error estimate, we took mean values of λT
and u2 averaged from measurements at eight rotation rates, from 0 to 4.9 × 104:
λTmean = 1.1 cm, u2

mean = 0.1 cm2 s−2. With these values, we obtain the error of
0.02 cm s−1.

The second important source of error in PIV, in particular, for digital systems, is
the error due to limited optical resolution of the system. According to Prasad et al.
(1992), the conservative estimate of our best resolution is 0.15 pixel sizes or 24 µm.
Thus, the upper bound on the error in velocity reconstruction from an image pair
separated by 1/30 s is 0.07 cm – greater than the error due to turbulent drag. However,
the resolution-related errors are random, and their influence is reduced in averaged
measurements with multiple samples.

3. Observations and analysis
The data presented in this section are arranged according to the level of

abstraction – from instantaneous velocity fields to graphs and histograms obtained by
extensive processing of multiple velocity vector grids. First, there are instantaneous
horizontal sections of velocity and temperature fields acquired at different elevations,
from 2 mm down from the top of the cell to mid-plane. Temperature maps acquired
at locations other than the immediate vicinity of the top are difficult to analyse quan-
titatively because light scattering from the TLC particles outside the light sheet can
change the hue values recorded by the camera. Thus only temperature maps near the
top are presented in this paper. PIV diagnostic does not suffer from this shortcoming,
and velocity maps at different elevations are equally accurate, although the ones near
the top surface are the most informative, because the proximity of the top allows a
better estimate of the out-of-plane velocity component.

Second, we present maps of vorticity and ‘topological charge’ that are constructed
from the numerically computed spatial derivatives of the velocity field. Whereas
analysis of vorticity maps is a traditional method used for both PIV and numerical
data, the extremely powerful technique based on the analysis of the local invariants
of the velocity gradient tensor was originally suggested by Chong, Perry & Cantwell
(1990) to facilitate visualization of numerical results and has been employed in several
numerical studies of turbulent flows, such as the works of Chacin, Cantwell & Kline
(1996) and Zhou et al. (1997). For a vortex-driven flow, the specific power of analysis
based on the velocity gradient tensor invariants lies in the ability to clearly identify
vortical structures as zones in the flow where the swirling component of the tensor
(complex eigenvalues) dominates the flow. In our earlier study of rotating convection
(Vorobieff & Ecke 1998a), we found this topological analysis method to be very
helpful. We are not aware of any other experimental investigations employing the
invariants of the velocity gradient tensor.

Finally, of interest are the statistics of velocity and vorticity at different depths, the
characteristic scales of the flow and the number of vortical structures with cyclonic
and anticyclonic rotation. The latter can be determined both by visual analysis of the
velocity maps and by a more rigorous procedure based on the local flow topology.

3.1. Instantaneous velocity and temperature maps

Figure 3 shows instantaneous velocity and sectional streamline patterns in the plane
adjacent to the top of the cell. Here and in subsequent sections, ‘adjacent to the top’
denotes the centreplane of the light sheet 0.4 mm below the top boundary. When the
image plane approaches the top boundary, the limit case of the sectional streamline
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X = 0, Ro→∞, R/RC =1.2¬105 X = 9.6¬102, Ro = 3.89, R/RC =1.5¬103

X = 4.8¬103, Ro = 0.77, R/RC =169 X =1.9¬104, Ro = 0.19, R/RC = 26

X = 3.4¬104, Ro = 0.11, R/RC =12 X = 4.8¬104, Ro = 0.08, R/RC = 8

Figure 3. Instantaneous velocity and streamline patterns in the plane adjacent to the top of the cell
for R = 3.2 × 108. Dimensionless rotation rates, Rossby numbers and R/RC values are labelled in
the figure.

pattern is the pattern of the skin-friction lines. The out-of-plane velocity component
decreases to zero near the top, and the sectional streamline pattern conveys more
information than it would in the bulk of the fluid.

Instantaneous temperature maps near the top of the cell for the values of Rossby
number corresponding to those of velocity maps in figure 3 are presented in figure 4.
These temperature maps were acquired in six separate runs of the experiment, under
conditions identical to those in the PIV runs, but with thermochromic liquid crystal
particle seeding instead of polystyrene microsphere seeding. The maps show the hue
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X = 9.6¬102, Ro = 3.89,
R/RC =1.5¬103

X = 0, Ro→∞,
R/RC =1.2¬105

X = 4.8¬103, Ro = 0.77,
R/RC =169

X =1.9¬104, Ro = 0.19,
R/RC = 26

X = 3.4¬104, Ro = 0.11,
R/RC =12

X = 4.8¬104, Ro = 0.08,
R/RC = 8

Figure 4. Instantaneous temperature maps in the plane adjacent to the top of the cell for
R = 3.2 × 108. Dimensionless rotation rates, Rossby numbers and R/RC values are labelled in
the figure. Bright areas indicate highest temperature, dark areas lowest.

component of the colour image, with black corresponding to red (lowest temperature)
and white to blue (highest temperature). A detailed description of the temperature
mapping in the TLC images is provided by Vorobieff & Ecke (1998b).

The flow structure near the top of the cell can be loosely categorized as follows. First,
for Ro� 1, the flow is dominated by sheets of thermal plumes. The plumes originating
near the top surface are manifested as limit lines in instantaneous streamline patterns
(e.g. one in the velocity map for Ω = 0 or equivalently Ro→∞, figure 3). Temperature
maps show these thermal plumes as lines of colder (dark) material (figure 4, top row).
The limit-line behaviour of the streamline patterns is dictated by the three-dimensional
structure of the flow. Cold material is ejected from the top thermal boundary layer
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in a sheet plunging downward into the bulk of the fluid. The limit line is the
sectional velocity pattern corresponding to the sheet, with the out-of-plane velocity
component increasing near the limit line. In the velocity patterns acquired at Ω = 0
and Ω = 9.6 × 102 (Ro → ∞ and Ro = 3.89, top row in figure 3), we observed such
limit lines in planes as far as 3/8 of the cell height away from the boundary. The
zones of hot upwelling flow at high Rossby numbers near the top surface can also be
distinguished in the velocity fields/streamline patterns. The typical streamline pattern
of such a zone is an unstable node, two of which can be seen in the images of the
top row, figure 3. The flow structure with the plumes/sheets has been observed in
non-rotating thermal turbulence (Tanaka & Miyata 1980; Zocchi et al. 1990), and
slow rotation (Ro� 1) does not appear to change it significantly.

As Ro approaches unity, however, the flow character changes significantly (figures 3
and 4, Ω = 4.8 × 103, Ro = 0.77). Cyclonic vortical structures become the most
prominent flow features in the flow near the top of the cell for Ro ∼ 1. These are
easily identifiable by their rotation (clockwise – with the rotation of the cell) and by
the spirals in the streamline pattern. The temperature maps show dark (cold) cores
of cyclonic vortices with cold material being swept into them in spirals. What is also
characteristic of many cyclonic vortices is that the streamlines show a stable limit-cycle
behaviour, with the material inside and outside the limit curve spiralling towards it.
This picture is consistent with the numerical simulations of Julien et al. (1997), who
observed that the flow is dominated by cyclonic vortices, the latter having a structure
very similar to the one we observe. This limit-cycle streamline pattern behaviour was
originally reported in our earlier work (Vorobieff & Ecke 1998a).

Finally, as the Rossby number decreases past unity, the flow pattern changes again.
Anticyclonic structures with counterclockwise rotation begin to emerge. These are
clearly evident in the velocity/streamline maps for Ro < 0.2 shown in figure 3.
Temperature maps have lower sensitivity in the range of higher temperatures, so
only in the image for Ro = 0.08 in figure 4 do the bright (warm) regions become
apparent. Visualization of the flow shows that these concentrated warm regions rotate
anticyclonically. It is important to note here that as Ro decreases (higher rotation
rate), so does R/RC. Thus the system becomes less turbulent. For R/RC ∼ 1 there
should be symmetry between cyclonic and anticyclonic vortices.

The instantaneous velocity and temperature maps do offer useful insights into the
structure of the flow, but velocity and streamlines are reference-frame dependent and
thus can be misleading. The next subsection of the paper describes ways to examine
the flow field in a more rigorous manner, using such reference-frame-independent
flow properties as out-of-plane vorticity and local flow topology determined from
invariants of the velocity gradient tensor.

3.2. Vorticity and topological charge

Vorticity is a traditional quantity to visualize in PIV studies of fluid flows. In the
particular situation of a rotating turbulent flow, computing the vorticity component
in the direction of the axis of rotation has the additional advantage of distinguishing
between cyclonic and anticyclonic structures. Figure 5 presents contours of constant
axial vorticity for the velocity maps shown in figure 3, with thick lines indicating
negative (clockwise, cyclonic) and thin lines positive (counterclockwise, anticyclonic)
vorticity. Denoting the vorticity in the counterclockwise direction as positive is tradi-
tional for fluid mechanics. In geophysical fluid dynamics, cyclonic vorticity is referred
to as positive. This would disagree with our notation in the Earth’s northern hemi-
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X = 0, Ro→∞, R/RC =1.2¬105 X = 9.6¬102, Ro = 3.89, R/RC =1.5¬103

X = 4.8¬103, Ro = 0.77, R/RC =169 X =1.9¬104, Ro = 0.19, R/RC = 26

X = 3.4¬104, Ro = 0.11, R/RC =12 X = 4.8¬104, Ro = 0.08, R/RC = 8

Figure 5. Contours of constant axial vorticity ω in the plane adjacent to the top of the cell
for R = 3.2 × 108. Dimensionless rotation rates, Rossby numbers and R/RC values are labelled
in the figure. Thick lines denote negative vorticity (cyclonic), thin lines indicate positive vorticity
(anticyclonic). Contours for ωτb = ±1,±2,±3 . . . are plotted.

sphere and agree with it south of the equator. Vorticity is non-dimensionalized by the
buoyancy time τb = 3.92 s.

One feature characterizing the vorticity maps is the scarcity of high (ωτb > 4)
vorticity concentrations for the Ro � 1 cases. Consider the difference between these
maps (figure 5, top row) and the map for Ω = 4.8×103 and Ro = 0.77. In the first maps
the maximum dimensionless vorticity ωτb does not exceed 5, whereas for Ro = 0.77 the
temperature map is dominated by two prominent concentrations of cyclonic vorticity
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Figure 6. Local flow topologies in swirling flow (after Chong et al. (1990)):
(a) stable-focus stretching, (b) unstable-focus compression.

with peak dimensionless values 18.6 (left) and 15.9 (right). Strong cyclonic vorticity
concentrations are also present in the subsequent maps. Although concentrations of
anticyclonic vorticity are not readily apparent in the maps for Ω = 4.8 × 103 and
Ω = 1.9× 104 (figure 5, middle row), such concentrations are present in the maps for
the two highest rotation rates, Ω = 3.4×104 and Ω = 4.8×104 (figure 5, bottom row).

Another field visualization method offering additional insight into the flow topology
deals with the local invariants of the velocity gradient tensor components in the
horizontal plane. Chong et al. (1990) indicate that a robust definition of a vortex
should be reference-frame independent. So is vorticity, but it can be associated with
swirl or with shear. Chong et al. (1990) suggest a definition of a vortex emphasizing the
role of swirling motion in the local flow topology. They define vortex cores as regions
of space where the velocity gradient tensor is dominated by rotation. In these regions,
the eigenvalues of the velocity gradient matrix [∂ui/∂xj] are complex. Full analysis
of the local topology of the flow would require knowledge of the entire velocity field,
not just sectional information. Nevertheless, some conclusions can be drawn from
sectional velocity data if some extra information about the out-of-plane velocity is
available. Perry & Chong (1986) describe the reconstruction of the three-dimensional
flow structure in the vicinity of a no-slip boundary from the surface flow patterns
(the limiting streamlines). The pattern above the surface that generates a particular
surface flow is not unique, so further conditions must be specified. In our case, the
additional condition imposed by the rotation of the cell is for the cores of vortex
columns to be preferentially aligned with the rotation axis. In the limit case of very
high rotation rate, the entire flow structure is composed of vortical columns. With
this condition, the local flow topology in the immediate vicinity of the top surface
can be determined. The following arguments do not present a rigorous reconstruction
procedure for the three-dimensional flow pattern. They are, however, very useful for
determining the location and size of the vortices near the top of the cell and their
nature – cyclonic or anticyclonic.

According to Chong et al. (1990), there are two non-degenerate types of incom-
pressible three-dimensional local flow topologies with swirling motion. In terms of the
properties of the velocity gradient tensor A = [∂ui/∂xj], these flow types correspond
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to A having one real and a pair of complex-conjugate eigenvalues. At a given time
and an arbitrary point in the flow, we can select a local coordinate system in which
the instantaneous velocity is zero and A is in its canonical form, with the x1-axis
directed along the real eigenvalue vector and the (x2, x3)- being the plane of complex
eigenvalues. Depending on the sign of the real part of the complex eigenvalue pair,
in this plane the origin is either a stable or an unstable focus. Out-of-plane motion
in the first case is away from the plane, or toward the plane in the second case, with
out-of-plane velocity in the local coordinate system decreasing to zero in both cases.
Figure 6 shows the resulting two flow patterns in the x1, x3 systems: stable-focus
stretching (a) or unstable-focus compression (b).

Now let us examine the situation near a horizontal boundary of the rotating
convection cell. If the plane in which we acquire the velocity field is sufficiently close to
the upper boundary, the out-of-plane velocity decreases to zero as the flow approaches
this plane. Therefore, in the local coordinate system (x1, x2, x3) in which the velocity
gradient tensor A is in its canonical form, the (x, y)-plane would correspond to the
complex eigenvalues plane x2, x3. At each grid point in this plane, components of the
two-dimensional rate-of-deformation tensor can be constructed from the derivatives
of the horizontal velocity components u and v, A2D = [∂(u, v)/∂(x, y)]. The eigenvalues
of this matrix are complex if the following expression is negative:

f = (TrA2D)2 − 4 detA2D. (3.1)

Consider the local three-dimensional flow structure near the grid point where f < 0.
If the local topology in the (x, y)-plane is of the stable focus type, this would imply a
stable-focus stretching behaviour in three dimensions. Correspondingly, an unstable
focus in the horizontal plane would indicate unstable-focus compression in three
dimensions.

What type of local topology should characterize cyclonic and anticyclonic vortex
structures? There are two properties one could associate with cyclones – first, the
direction of rotation (clockwise in our case); and, second, the direction of vertical flow
in the core: near the top surface, cyclonic vortices should be carrying cool fluid into
the bulk of the cell. Conversely, anticyclones would be counterclockwise-rotating and
carrying hot fluid toward the top surface. Therefore, we can construct two possible
methods of identification of cyclones and anticyclones. The first method locates
regions in the flow where the characteristic function f is negative and determines
the sign of vorticity in each of these regions. The second method examines the type
of local topology in terms of focus stability in the zones of negative-valued f and
associates cyclones with stable-focus and anticyclones with unstable-focus topology,
depending on the sign of the trace of the matrix A2D . The most convenient way to
represent the results would be in terms of two ‘topological charge’ functions. The first
function is

F1 = sgn(ω)fU(−f), (3.2)

where f is defined by (3.1), ω is the local vorticity and U is the Heavyside function:
U(x) = 0, x < 0, U(x) = 1, x > 0. We can define an alternative criterion F2 as

F2 = sgn(TrA2D)fU(−f). (3.3)

Figures 7 and 8 show the maps corresponding to the two definitions of the
‘topological charge’ given by (3.2) and (3.3) respectively. The maps for Ω = 0 and
Ω = 9.6× 102 are not shown, because the velocity fields in figure 3 have no areas of
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X = 4.8¬103, Ro = 0.77, R/RC =169 X =1.9¬104, Ro = 0.19, R/RC = 26

X = 3.4¬104, Ro = 0.11, R/RC =12 X = 4.8¬104, Ro = 0.08, R/RC = 8

Figure 7. Contours of constant topological charge F1 (3.2) in the plane near the top of the cell for
R = 3.2 × 108. Thick lines denote focal areas with clockwise rotation (cyclonic), thin lines denote
focal areas with counterclockwise rotation (anticyclonic). Values of Ω, Ro and R/RC are labelled.

strong swirl where the characteristic function f would be negative over the extent of
at least two grid points.

The most striking feature of figure 7 is the correspondence between the apparent
vortex cores in the velocity/streamline patterns (figure 3) and the areas with focal
flow topology, where the flow is locally swirl-dominated and F1 6= 0. What is also
interesting is that the flow maps in terms of topological charge appear much simpler
than the vorticity maps. Cyclonic vortices as defined by Chong et al. (1990) are present
in all four maps, whereas anticyclonic vortices are present only for Ro 6 0.19 and are
generally weaker and more diffuse than the cyclones.

Additional insight is provided by comparing the patterns of figure 7 and figure 8.
What is the correspondence between the direction of the swirl in a focal-area region
and the local stability? Whereas there is an overall correspondence between stable-
focus topology and clockwise swirl and unstable-focus topology and counterclockwise
swirl, an interesting feature of figure 8 is the presence of unstable-focus topology areas
in vortices that the first map (figure 7) identifies as cyclones. It is also noteworthy that
the streamline patterns for areas with cyclonic rotation also frequently show a more
complex structure than a simple inward clockwise spiral; in many cases, one can see
limit-cycle behaviour with a stable clockwise limit-cycle streamline being approached
by inward-spiralling streamlines from the exterior, while from the core the streamline
is ‘unwinding’ towards the limit cycle. Such streamline patterns are apparent in the
velocity maps for Ω = 4.8×103, 1.9×104 and 3.4×104 in figure 3. Figure 9 shows more
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X = 4.8¬103, Ro = 0.77, R/RC =169 X =1.9¬104, Ro = 0.19, R/RC = 26

X = 3.4¬104, Ro = 0.11, R/RC =12 X = 4.8¬104, Ro = 0.08, R/RC = 8

Figure 8. Contours of constant topological charge F2 (3.3) in the plane near the top of the cell for
R = 3.2 × 108. Thick lines denote stable-focus local two-dimensional topology, thin lines indicate
unstable-focus local two-dimensional topology. Values of Ω, Ro and R/RC are labelled.

examples, along with enlarged temperature map fragments showing similar ridge-like
structure, which were predicted numerically by Julien et al. (1997). They also provide
a qualitative explanation of the effect by considering the interaction of the cyclonic
vortex with the thermal boundary layer near the horizontal surface. Similar behaviour
of vortices in rotating convection has been observed experimentally and reported by
Boubnov & Golitsyn (1990) and in our earlier work (Vorobieff & Ecke 1998b). The
three-dimensional flow structure with a ridge of downwelling flow (Sullivan’s vortex)
is also sketched in figure 9. It is interesting that the analytical study of Goncharov &
Gryanik (1986) found a lattice of dissipative Sullivan’s vortices to be stable, unlike a
similar lattice of Burgers vortices.

Whereas the cyclonic vortices often exhibit behaviour of this kind (in the case
of smaller vortices, our velocity-field acquisition may fail to resolve the ridge), we
have not observed it in anticyclonic vortical structures, again in agreement with the
numerical results of Julien et al. (1997). In general, their simulations show remarkably
good correspondence with our observations when one accounts for the different paths
in parameter space in the two studies. Ours is a path of constant R = 3.2 × 108,
whereas Julien et al. (1997) consider a path of constant Ro = 0.75. They observe
that anticyclonic vortices are unlikely when Ω is greater than the r.m.s. vorticity for
non-rotating convection. This value for our system is about 0.7 s−1, corresponding to
an implied threshold for anticyclonic vortices of Ω = 1.5× 104 (Ro ' 0.25). Although
we observe anticyclones for higher Ω, the apparent reason for that is the lower Ro
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X = 4.8¬103, Ro = 0.77 X =1.9¬104, Ro = 0.19 X = 4.8¬104, Ro = 0.08

Figure 9. Examples of ridge-like structure in cyclonic vortices. Top row – streamline patterns,
middle row – temperature maps, bottom row – sketch of the three-dimensional flow structure
(Sullivan’s vortex). For streamline patterns and temperature maps, dimensionless rotation rates and
Rossby numbers are indicated. The size of each map is 3.4 by 3.4 cm. Temperature and velocity
maps belong to different experiment runs.

we have by moving at constant R. Where the studies overlap at Ro ' 0.75, they are
consistent regarding the unlikelihood of anticyclonic vorticity.

The next section describes the differences between cyclones and anticyclones from
a statistical point of view. It will also draw more attention to the flow in the bulk of
the fluid.

3.3. Statistics and scales

We can learn more about the nature of rotating convection from probability distribu-
tions of lateral velocity and vertical vorticity. Velocity fluctuations give an indication
of the strength of the turbulence whereas vorticity fluctuations are some measure
of the injection of vorticity at the boundaries due to Ekman-layer interactions. The
velocity data are limited by being confined to a lateral plane and thus the contribution
of vertical velocities is hard to estimate. Without rotation, the velocity field is fairly
isotropic whereas the isotropy with rotation is not known. These limitations aside,
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Figure 10. Mean square velocity (N) and vorticity (•) near the top of the cell
(non-dimensionalized with vb and τb respectively) for different rotation rates.

the structure and quantitative moments of the velocity and vorticity distributions
add significantly to the understanding of rotating convection. We compute statistical
quantities by averaging over space and time. Each data set contains 30 velocity fields
with about 4000 vectors per field which yields about 105 velocity vectors per data
set. We estimate uncertainty in the mean quantities as the standard deviation of the
distribution divided by the square-root of the number of uncorrelated velocity vectors
per data set, of order 2000.

Before presenting the fluctuations, it is useful to consider the mean-square averages
of velocity and vorticity. In figure 10, 〈u2〉 and 〈ω2〉 are evaluated near the top
boundary, plotted against Ω, and non-dimensionalized by the buoyancy velocity
v2
b = (3.2 cm s−1)2 and by τ−2

b correspondingly. After a sharp decrease, the mean-
square velocity rises slightly with Ω whereas the mean-square vorticity increases much
more rapidly. The velocity fluctuations are injected near the boundary where the
vertical velocity component is small so that 〈u2〉 captures most of the kinetic energy.
The small variation in 〈u2〉 with Ω (less than a factor of 2) suggests that rotation
has little effect on injected kinetic energy. In contrast, the dramatic increase in mean-
square vorticity (a factor of 8) reflects the strong injection of vorticity at the boundary,
resulting from Coriolis forces.

3.3.1. Velocity statistics

Let us begin with the standard deviations σu and σv of the horizontal components
of the velocity field. The most significant change in their values occurs as Ro decreases
below unity and is more apparent near the top of the cell, where zero rotation rate
corresponds to dimensionless standard deviations σu,v ∼ 0.085, whereas for Ro > 1
σu,v ∼ 0.06. Zero rotation rate at the mid-plane is characterized by σu,v ∼ 0.045,
dropping to 0.03 as Ro exceeds one and slowly decreasing thereafter. The decrease
in velocity fluctuations both at the boundary and in the bulk implies decreased
turbulence with increasing Ω.

Figure 11 shows the normalized probability density functions (PDFs) of the u and
v velocity fluctuations near the top of the cell and at the mid-plane. We used r.m.s.



208 P. Vorobieff and R. E. Ecke

104

103

102

101

–6 –4 –2 0 2 4 6 –6 –4 –2 0 2 4 6

101

102

103

104

C
ou

nt

C
ou

nt

(a) (b)

v, X = 3.8¬104
u, X = 3.8¬104
v, X =1.9¬104
u, X =1.9¬104
v, X = 4.8¬103
u, X = 4.8¬103
v, X = 0
u, X = 0

(u–u)/ru, (v–v)/rv (u–u)/ru, (v–v)/rv

Figure 11. Velocity-fluctuation PDFs near the top of the cell (a) and at the mid-plane of the
cell (b). The velocities are normalized by their r.m.s. values. Solid line – Gaussian fit.

velocities σu and σv for normalization. In the mid-plane, PDFs of both u and v are
close to Gaussian for all the rotation rates (including those not shown in figure 11).
In the top plane, small exponential tails begin to emerge at higher rotation rates,
becoming prominent at Ω = 3.8 × 104. These tails are likely to be the manifestation
of coherent structures (vortices), the numbers of which grow with rotation rate. At all
rotation rates, the PDFs are nearly symmetric, with no noticeable skewness. Gaussian
velocity PDFs inside a non-rotating convective cell have been reported by Shen, Xia
& Tong (1995) for R > 108 in water and by Ashkenazi & Steinberg (1999) for R
between 1011 and 1013 in sulphur hexafluoride. Xin & Xia (1996) also measured
velocity PDFs of Gaussian form in boundary layers of a non-rotating convective
cell at R ∼ 109. Thus, we see that the velocity statistics are only weakly affected by
rotation and that in the interior there is virtually no difference in velocity PDFs, We
now consider vorticity PDFs, which show dramatic changes with Ω.

3.3.2. Vorticity statistics

Observation of the flow fields suggests changes in the balance of vorticity with
rotation rate, with a certain range of rotation rates favouring cyclonic vorticity. This
feature should be manifested in the statistics of the vorticity field. We present the
PDFs for vertical vorticity in the plane adjacent to the top of the cell (figure 12) and
in the mid-plane (figure 13). Along with the dimensionless value of vorticity (ωτb), we
also present vorticity in terms of the local Rossby number (RoL = ω/2ΩD). Whereas
the PDFs for Ω = 0 and Ω = 9.6× 102 (Ro = 3.9) in figure 12 are nearly symmetric,
the plots for higher rotation rates are skewed, showing stronger negative (cyclonic)
vorticity. PDFs for higher rotation rates are also flatter near the origin.

The corresponding mid-plane PDFs, however, show only a weak dependence on
the rotation rate and remain fairly symmetrical throughout the range of rotation
rates we investigate. The non-dimensionalized skewness of the PDFs in figures 12
and 13 is compared in figure 14 (left axis). The mid-plane skewness remains near
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Figure 12. PDFs of dimensionless vertical vorticity at the top of the cell. The top horizontal axis
shows vorticity in terms of RoL = ω/2ΩD . Values of Ω, Ro and R/RC are labelled.

zero. The skewness at the top, on the other hand, increases substantially. From close
to zero for the non-rotating case, it rapidly increases as the rotation rate approaches
4.8×103 (Ro = 0.77), reaches a maximum at Ω = 1.9×104 (Ro = 0.19) and then starts
decreasing again. The decrease at high rotation rates suggests that the convection
begins to approach a regime with cyclonic and anticyclonic vorticity in balance. The
dimensionless standard deviation of vorticity (figure 14, right axis) increases when
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2

1

0

0 10 20 30 40 50

0

2

4
0.070.090.120.190.37∞

Ro

Ro≈0.3

S
ke

w
ne

ss
¬

s b

X (¬103)

S
T

D
¬

s b

Figure 14. Dimensionless skewness of vertical vorticity PDFs at the top of the cell (filled symbols)
and at the mid-plane (open symbols) for different rotation rates (circles, left axis); dimensionless
standard deviation of vertical vorticity (triangles, right axis). Representative error bars shown in
upper left and right corners respectively.



Turbulent rotating convection 211

2

1

0

3

2

1
0 0.125 0.250 0.375 0.500

h/d

S
ke

w
ne

ss
¬

s b
S

ta
nd

ar
d 

de
vi

at
io

n¬
s b

X = 0

9.2¬102

4.8¬103

1.9¬104

3.4¬104

4.8¬104

Figure 15. Dimensionless skewness (top) and standard deviation (bottom) of vertical vorticity PDFs
for different rotation rates vs. dimensionless depth h/d. Representative error bars are shown in the
top right corner of each graph.

the flow changes from thermal-sheet-dominated to vortex-dominated. The change is
stronger in the plane adjacent to the top, where the standard deviation increases
from about 1.2 at Ω = 9.6 × 102 to 2.2 at Ω = 1.9 × 103 and further to 3.5 at
Ω = 4.8× 104. At the same time, the corresponding growth in the mid-plane is only
from 1.2 to 1.9. The steady increase in vorticity fluctuations at the top and near the
middle indicates increasing injection of vorticity at the boundaries as Ω grows. In
contrast, the skewness, which can be regarded as a measure of cyclonic/anticyclonic
asymmetry, peaks at Ro ' 0.5 and then goes down with decreasing R/RC.

Another interesting issue is the dependence of skewness and standard deviation of
the axial vorticity component on depth (figure 15). In this graph, vorticity is again
non-dimensionalized with τb. The depth h, the horizontal coordinate in the graph,
is non-dimensionalized by the cell height d, so that h/d = 0 is the top of the cell
and h/d = 0.5 is the mid-plane. For the case of no rotation, the skewness remains
close to zero at all depths. For the rotating cases, the skewness at the top is higher
than that in the interior, and so is the standard deviation. In the mid-plane, the
skewness remains close to zero. The skewness profiles for Ω = 4.8× 103 (Ro = 0.77)
and for Ω = 1.9× 104 (Ro = 0.19) are qualitatively similar to the profiles acquired by
Julien et al. (1997) numerically, although in our data the decrease of skewness with
depth is slower. The character of the standard deviation plots apparently changes as
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the convective Rossby number passes unity. For low rotation rates (Ω 6 9.2 × 103,
Ro > 1) the standard deviation does not exhibit any noticeable dependence on
depth and remains close to 1.2. High rotation rates (Ω > 1.9 × 104, Ro 6 0.19 and
smaller) are characterized by the standard deviation 1.80± 0.08 in the interior of the
cell, increasing to 3.21 ± 0.35 at the top. The plot for Ω = 4.8 × 103 (Ro = 0.77)
is transitional between the two groups described above. The depth variation shows
distinctly that cyclonic/anticyclonic asymmetry is forced at the boundaries and decays
rapidly in the bulk, owing to turbulent mixing. The strength of vortex fluctuations
decays in the bulk, similarly to decay of temperature and velocity fluctuations in
non-rotating convection.

3.3.3. Turbulent length scales and large-scale circulation

Convection at high Rayleigh number is characterized by a number of turbulent
length scales and their associated Reynolds numbers although few experiments have
directly probed these scales. In this experiment we can determine the Taylor microscale
of the flow and the associated Reynolds number Reλ.

To provide better insight into the behaviour of scales corresponding to different
flow regimes, we have computed the two-dimensional longitudinal velocity correlation
function in the plane near the top of the cell,

f(r) =
〈uL(x)uL(x− r)〉

〈u2〉 , (3.4)

where uL denotes projection of the velocity on the radius-vector r and 〈 〉 indicates
averaging over space and time (involving thirty 73 × 53 velocity-vector grids in our
case). From the velocity correlation functions, one can determine the Taylor microscale
λT (Tennekes & Lumley 1972, equation (3.2.13)). This scale was already referred to in
the section of this paper dealing with the accuracy of PIV interrogation. The Taylor
microscale can be defined as the coefficient of the second-order term in a parabolic
fit to the normalized correlation function f(r) near the origin,

f(r) = 1− r2

2λ2
+ O(r4), (3.5)

or

λT =
1√−d2f/dr2

. (3.6)

Specifically, we used the r range from 0.224 cm (PIV interrogation window size) to
0.9 cm for the parabolic fit. The results for different rotation rates are presented in
figure 16. The overall tendency is for λT to decrease with Ω. It is interesting that λT
changes most rapidly as Ω reaches 4.8 × 103 (and Ro passes through unity). Similar
trends can also be observed in the behaviour of the microscale Reynolds number

Reλ =
〈u2〉1/2λT

ν
. (3.7)

For Ro > 1, Reλ ∼ 60, whereas for Ro = 0.77 (Ω = 4.8 × 103) it decreases below 30
and continues to decrease as Ω goes up.

The behaviour of Reλ is consistent with the flow becoming less and less turbulent
as R/RC decreases. Another interesting issue is the increase in the number of vortices
with the rotation rate (Boubnov & Golitsyn 1995). Our previous studies (Vorobieff
& Ecke 1998a, b) provided quantitative measurements of the size and number of
vortices, the latter being in good agreement with similar measurements performed by
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Figure 16. Taylor microscale λT (squares, left vertical axis) and microscale Reynolds number Reλ
(circles, right vertical axis) near the top of the cell for different rotation rates.

Boubnov & Golitsyn (1986) for the case of a rotating cell with an open top. The
study of the dependence of vortex size on rotation rate (Vorobieff & Ecke 1998a)
used the local flow topology to define the vortices in the flow as areas where the
characteristic function f, as defined in (3.1), is negative. Using a similar criterion in
conjunction with local vorticity, (3.2), we counted the number of simply connected
cyclonic and anticyclonic vortical areas in the local topology maps (see examples in
figure 7). Figure 17 shows our findings in terms of the number of vortices N per unit
area versus rotation rate. For each rotation rate, vortices in 30 instantaneous fields
were counted. The number of cyclones grows monotonically with Ω. The number of
anticyclonic vortex structures should be zero for rotation rates below Ω = 1.6 × 104

(by extrapolation of the non-zero part of the anticyclonic vortex plot, dashed line in
figure 17). This would correspond to the range of Rossby numbers ∞ > Ro > 0.23.
For lower Rossby numbers, cyclonic vortices exist and their number also increases
with rotation rate. The threshold where anticyclones become apparent corresponds
to R/RC ' 50, which is about where the crossover to non-turbulent scaling occurs
in the heat transport measurements (Zhong et al. 1993; Liu & Ecke 2002). For the
three highest values of Ω, the rate of this increase for anticyclones is slightly higher
than that for cyclones, suggesting that with further increase in Ω a balance between
cyclones and anticyclones might be reached.

The measurement of local vorticity allows us to define a local Rossby number in
terms of vertical vorticity. Our definition of RoL used in the PDFs involved vorticity
magnitude. One can also define a laterally averaged Rossby number using r.m.s.
vorticity fluctuations, RoL = σω/2ΩD . Using the latter definition, we can compare RoL
with the global Ro based on buoyancy and rotation time scales. In figure 18, RoL is
plotted versus Ro along with a comparison curve RoL = Ro. To first approximation,
the mid-plane RoL is proportional to Ro with a coefficient of order unity, indicating
that Ro is an excellent measure of bulk rotation effects. Near the boundary, however,
there is a transition for RoL . 1 to higher RoL that appears to asymptote at small Ro
to RoL ' 4Ro. Again, this is consistent with the notion of boundary-injected vorticity
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Figure 18. Local Rossby numbers RoL versus the global Rossby number at the top of the cell (◦)
and at mid-plane (•). The solid line corresponds to RoL = Ro. Dashed lines are guides for the eye.

that mixes in the interior region producing a steady-state r.m.s. RoL that is almost
linear in Ro. Close inspection of the mid-plane data suggests two linear ranges at low
and high Ro with a weak transition zone for 0.5 < Ro < 1.

Finally, the statistics of our velocity data can help elucidate the issues of the
existence of global circulation patterns encompassing the cell. In the case of non-
rotating convection in a cell with a low aspect ratio, a global vertical circulation
pattern spans the extent of the cell, thus making the characteristic spatial scale
equal to the cell size. A sufficiently high rate of rotation should destroy this global
circulation (Taylor–Proudman theorem), effectively reducing the largest scale present
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in the system to that of an individual vortex. Another possibility is the existence of
a global (cell-sized) pattern induced by Ekman pumping in the horizontal boundary
layers, similar to that in stably stratified rotating fluid (Barcilon & Pedlosky 1967).

What would be the implications of the existence of a global circulation pattern in
the plane adjacent to the top of the cell? A space–time average of the horizontal
velocity would be non-zero, because the pattern would impose a preferential direction
on the flow. Likewise, the pattern induced by Ekman pumping could manifest itself
in a non-zero space–time average of the radial component of the velocity. Figure 19
shows the averages of the horizontal velocity and its radial component. Each average
was taken over 30 fields acquired at approximately equal delays within an interval of
half an hour.

For the rotation rates corresponding to Rossby numbers 1.90 and greater (the first
three data points), the averaging results in a net dimensionless velocity of about 0.06.
For higher rotation rates, the averaged velocity is about 0.006, lower than the error
of our PIV velocity interrogation for a single grid point. Net horizontal velocities
higher than this level are observed only in the cases when the flow is not vortex-
dominated, consistent with the notion that a global circulation pattern exists for
non-rotating turbulent convection and rotating convection at high Rossby numbers.
For the average of the radial velocity, the averages remain small for all the rotation
rates. The azimuthal circulation predicted by Hart & Ohlsen (1999) would be on the
threshold of what we can reliably observe. It is clear, however, that the velocities
associated with the individual vortices are much stronger than those associated with
the global circulation.

The horizontal velocity scale provides a measure of the large-scale Reynolds number
ReL = 〈u〉d/ν, which is plotted in figure 19. This spatially averaged measure of ReL
should be somewhat smaller than one based on peak horizontal velocity. Without
rotation, ReL ∼ 300, compared to 500 < ReL < 600 obtained using other techniques
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(Tilgner, Belmonte & Libchaber 1993; Qiu, Yao & Tong 2000). We scale their results
to our value of R using the relationship ReL ∼ R1/2. As rotation increases, ReL drops
rapidly so that for Ro & 1 we obtain ReL < 100. This is consistent with the decrease
in Reλ shown earlier.

4. Conclusions
We have investigated Rayleigh–Bénard convection in a tall fully enclosed cylindrical

cell (aspect ratio Γ = 2r0/d = 1) at R ∼ 3.2 × 108 for the non-rotating case and
for a range of rotation rates corresponding to convective Rossby numbers from 4 to
0.06. Our investigation focused on the velocity and vorticity fields and their statistical
properties.

We have found three distinct flow regimes corresponding to different ranges of
Rossby numbers. First, for slow rotation (∞ > Ro > 1.90), the flow is dominated by
thermal sheets, similar to those observed by Zocchi et al. (1990). Spatially averaged
horizontal velocity data indicate a vertical circulation pattern spanning the entire
extent of the cell. Second, for Ro ∼ 1, the flow structure is not unlike that predicted
by the numerical simulations of Julien et al. (1997) for Ro = 0.75. The most prominent
features of the flow near the top of the cell are cyclonic vortices (plumes), with velocity
and temperature patterns often suggesting an upwelling zone in the core and a ridge-
shaped region of downwelling flow surrounding it. This feature of cyclones in rotating
convection was seen in numerics (Julien et al. 1997) and observed experimentally for
free-surface convection (Boubnov & Golitsyn 1990). Near the top of the cell, the
vorticity PDFs show a skewness favouring cyclonic vorticity. Deeper into the bulk of
the fluid, this skewness largely vanishes so that at the mid-plane of the cell, vorticity
PDFs remain practically symmetric. This also applies to higher rotation rates (Ro 6
0.23) characterizing the third flow regime, when anticyclonic and cyclonic structures
coexist in the flow, and the balance between cyclonic and anticyclonic vorticity begins
to shift back to a more symmetrical distribution. For vortex-dominated flow regimes,
we found the vorticity in the individual vortex structures to be overwhelmingly
stronger than the possible global circulation, axisymmetric or not, thus suggesting
that the largest characteristic horizontal scale in these regimes is the size of an
individual vortex which decreases with increasing rotation rate.

The lateral velocity and vertical vorticity statistics reveal important features of
rotating convective turbulence. Without rotation, our large-scale Reynolds number
ReL ' 300 is comparable to that measured in other systems at similar R, and the
Taylor microscale Reynolds number Reλ ' 65. As rotation increases, large-scale
mean flow largely disappears and the interior Reλ drops to less than 10, indicating
that rotation suppresses bulk turbulence. This is supported by decreased velocity
fluctuations and increased temperature fluctuations at higher rotation rates (Liu &
Ecke 2002). Thus it is surprising that the heat transport actually increases (Liu & Ecke
1997, 2002) owing to Ekman suction of the vortices in the boundary layers and that
the heat transport scaling is mostly unaffected by rotation. This result would appear
to seriously challenge the view of turbulent heat transport developed for non-rotating
convection (Shraiman & Siggia 1990; Grossman & Lohse 2000).

Local Rossby number RoL measurements confirm that in the interior the global
Rossby number Ro is a good parameter for characterizing the effects of rotation in
turbulent rotating convection. Our experiments show strong vorticity injection at the
boundary similar to the strong velocity injection for non-rotating convection.

A theory encompassing rotating convection is clearly called for as are experiments
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in different fluids and at higher R similar to the existing studies of non-rotating
turbulent convection.
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